Complementarity between meronymy and frame of reference use in Diidxa Za
Perspectives from an endangered language

Gabriela Pérez Báez, Smithsonian
perezbaezg@si.edu

Geographic grounding
Place, direction and landscape in the grammars of the world
Københavns Universitet
May 30-31, 2016

This material is based upon work supported by the National Science Foundation under Grant No. BCS-0723694.
Synopsis

• Diidxa Za (Isthmus Zapotec, Otomanguean), as many other Mesoamerican languages, readily uses body-part terms to refer to object parts.
• The literature on the topic raises issues as to the degree of productivity of these meronyms and the role of metaphor in their semantic extension.
• I analyze body part-derived meronyms in Diidxa Za in a Structure-Mapping Theory approach
 o (Gentner 1983, Gentner & Markman 1997, Markman & Gentner 2000, inter alia)
 o Different degrees of productivity of body part-derived meronyms correspond to different types of comparisons.
 o Meronymy interfaces with frame of reference use
Presentation Outline

• The language: Diidxa Za
• Theoretical overview
• Elicitation and experimental tasks
• Domain comparisons in meronymy assignment
• Division of labor: meronymy and frames of reference
• Conclusions: perspectives from an endangered language
The language

• Diidxa Za
 o a.k.a. Juchiteco (JCH), Juchitán Zapotec, Isthmus Zapotec, zapoteco de la planicie costera
 o Otomanguean > Zapotecan > Zapotec
 • Zapotec languages – as complex as the Romance language family

• Spoken in 22 municipalities in the state of Oaxaca
 o Endangered language
 • 70,000 speakers
 • In only 2 of 22 municipalities are children learning the language (Marcial Cerqueda 2014 ms.)
 o Data mostly from La Ventosa variety
 • In La Ventosa, the youngest speakers are in their 20s
Theoretical background
Meronymy in Mesoamerican languages

- Locatives derived from body part terms (BPTs) are considered an areal MA feature (Campbell, Kaufman & Smith-Stark 1986)
 - BPTs as locatives are not unique to MA, but there is a particular prevalence of BPTs which often remain nominal in locative predication which has been reported as a noteworthy phenomenon for MA

- BPT use in locative constructions is attested in
 - Otomanguean
 - Mayan
 - Tzeltal: Levinson 1994
 - Tzotzil: de León 1992
1. Base: human body
 - "any form is regarded as though it were the human body"
2. Dependency on the "conception of human anatomical organization"
3. Prototypicality is critical: a small set of BPTs can be used in "a transposable locative framework"
 - Some BPTs are restricted, ex. ‘hand’, ‘neck’
4. "The seven-part vertical framework is maintained with formal integrity"
5. Speakers are tolerant of discrepancies between base and target

- Metaphor is cited but no description of the type of comparisons is offered
- No explanation for the difference in productivity of BPTs is offered.

Figure 1. Diagrams of Ayoquesco Zapotec body part terms, adapted from MacLaury 1989:122, 125 and 129
Rejects an analysis based on metaphor or generative analogy and proposes a precise geometrical algorithm is at play
- Orientation-free, based on shape analysis

Critique of metaphor explanation
- Overgeneration of comparison and semantic extension
- That not all BPTs are extended outside their semantic domain
- A lack of involvement of notions such as canonical orientation, normal direction of motion, dangerous end
- Possible mismatches between the base and the target, ex. Three hands, two noses.
- Naming of parts of simple objects is contrary to simple/concrete-to-complex/abstract direction in analogy and metaphor.

Figure 1. Diagrams of Tzelta body part terms, adapted from Levinson 1994: 818.
Questions/Thoughts

• What is the role of metaphor, if any?
 o Both studies discuss metaphor without a clear analysis of it
 o MacLaury 1989 seems to rely on a view of metaphor as domain mapping
 o Levinson 1994 seems at times to restrict metaphor to analogy
 • However, the arguments against a metaphoric process seem to rely on attribute matching (literal comparison)
 o This makes it difficult to assess the role of metaphor and understand the processes behind the semantic extension of BPTs

• How productive are BPTs and why?
 o MacLaury 1989 does not discuss different degrees of productivity

• Does the meronymic system interface with other systems?
Elicitation and experimental tasks
Preliminary data

• Project for the documentation of the languages of Mesoamerica (PDLMA)
 o Diidxa za Lexical database (Pérez Báez et al. Ms.).
• Data from 15 speakers
 o La Ventosa, Juchitán de Zaragoza and Santa María Xadani
 o Bilinguals

Figure 3. Screen captures, Diidxa Za – Spanish – English lexical database (Pérez Báez, Kaufman and Feke ms)
MesoSpace experimental tasks

- **Spatial Language and Cognition in Mesoamerica (MesoSpace I and Ib)**
 - Data presented today is from MesoSpace I (Cf. Bohnemeyer 2008)

1. **Meronyms**
 - Data from 9 participants coded and analyzed

2. **Novel objects part identification**
 - Data from 6 dyads coded and analyzed

3. **Novel objects placement**
 - Data from 6 dyads

4. **Ball and Chair (referential communication task, photo matching)**
 - Modeled after Men and Tree (Pederson et al. 1998:562)
 - Data from 6 dyads coded and analyzed

5. **New Animals in a Row**
 - Non-linguistic task modeled after Animals in a Row (Levinson and Schmitt, 1993)
 - Data from 19 participants coded and analyzed

This material is based upon work supported by the National Science Foundation under Grant No. BCS-0723694.
Meronyms

Figure 6 (Top drawings). Stimuli – body part drawings
Figure 7 (Bottom photos). Stimuli – ordinary objects

zhii ‘nose’ lu ‘face’ ike ‘head’ deche ‘back’
gye lu ‘eye’
ndaa ni ‘stomach’
nyee ‘lower extremity’

zha’na ‘buttocks’
kwe’ ‘flank’

rwa’ ‘mouth’

kwe’ ‘side,flank’
Novel objects (the *chunches*)

- **Stimuli**
 - Set of nine novel objects
 - Objects of novel shape intended not to resemble any objects or animals recognized in either Mesoamerican or Euro-American culture
 - Design informed by the literature on BPT use in Mesoamerica

- **Research questions**
 - How productive are meronymies across the languages of the sample?
 - What is the role of global analogical domain mappings in MA meronymies?
 - To what extent is there variation in the global analogical mappings and shape-analytical labeling algorithms found in different languages?

- **Can parts be named with BPTs independently of a match in canonical number of parts in the base?**
 - Can we have three “noses” or “nipples”?
 - Yes: nyee ‘lower extremity’, xidi ‘breasts’

- **Are meryonyms assigned to objects without identifiable features arbitrarily or in analogy to the human body?**

Figure 8. Stimuli – Novel object part identification task #3

Figure 9. Stimuli – Novel object part identification task #5

Figure 10. Stimuli – Novel object part identification task #8
Novel objects
part identification

• Referential communication task
 o Object-to-object matching tasks
 o Novel objects are prepared with markings
 o Participants extract an object from a bag as to no impose an orientation
 o A director instructs the matcher to replicate the markings

• Central data: verbal descriptions and their referents
 o Data from 6 dyads
 o Notes, audio, video

Figure 11. Experimental task setup (Bohnemeyer 2008: 16)

Figure 12. Stimuli – Novel object part identification task #6
Domain comparisons in meronym assignment
Overall corpus

- 9 participants provided **134** body part terms (BPTs)
 - **Less productive:** 90 were used only in a **single** semantic domain
 - 25 were used to refer to animal (human and non-human) bodies
 - **More productive:**
 - 16 were used to refer to animal (human and non-human) bodies, plant parts and object parts
 - 6 most productive BPTs can be used with the simplest of objects

![Figure 13](Top photo). Stimuli – Ordinary object of complex geometry
![Figure 14](Bottom drawing). Stimuli – Ordinary object of simple geometry
Novel objects – corpus

<table>
<thead>
<tr>
<th>TPC</th>
<th>English gloss</th>
<th>Note</th>
<th>Frequency</th>
<th>Dyads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nyee</td>
<td>lower extremity</td>
<td>47</td>
<td>1-2, 3-4, 7-8, 9-11, 18-19</td>
</tr>
<tr>
<td>2</td>
<td>lu</td>
<td>face</td>
<td>46</td>
<td>1-2, 3-4, 7-8, 9-11</td>
</tr>
<tr>
<td>3</td>
<td>kwe7</td>
<td>flank</td>
<td>43</td>
<td>1-2, 3-4, 9-11, 18-19</td>
</tr>
<tr>
<td>4</td>
<td>ndaani</td>
<td>stomach, belly</td>
<td>19</td>
<td>1-2, 3-4, 7-8, 9-11, 18-19</td>
</tr>
<tr>
<td>5</td>
<td>zha7na</td>
<td>buttocks</td>
<td>15</td>
<td>1-2, 3-4, 9-11</td>
</tr>
<tr>
<td>6</td>
<td>na*7</td>
<td>upper extremity</td>
<td>11</td>
<td>1-2, 3-4, 7-8, 18-19</td>
</tr>
<tr>
<td>7</td>
<td>gipi!7, xkipi!7</td>
<td>belly button</td>
<td>8</td>
<td>1-2, 9-11</td>
</tr>
<tr>
<td>8</td>
<td>ike</td>
<td>head</td>
<td>8</td>
<td>1-2, 3-4, 9-11, 18-19</td>
</tr>
<tr>
<td>9</td>
<td>dyaga</td>
<td>ear</td>
<td>7</td>
<td>9-11</td>
</tr>
<tr>
<td>10</td>
<td>deche</td>
<td>back</td>
<td>6</td>
<td>1-2, 3-4, 7-8, 9-11</td>
</tr>
<tr>
<td>11</td>
<td>gye lu</td>
<td>eye</td>
<td>6</td>
<td>1-2, 3-4, 7-8</td>
</tr>
<tr>
<td>12</td>
<td>yanni</td>
<td>neck</td>
<td>4</td>
<td>1-2, 9-11</td>
</tr>
<tr>
<td>13</td>
<td>zhii</td>
<td>nose</td>
<td>3</td>
<td>3-4, 9-11</td>
</tr>
<tr>
<td>14</td>
<td>j.lo*mo</td>
<td>back (non-human)</td>
<td>2</td>
<td>5–6</td>
</tr>
<tr>
<td>15</td>
<td>kosta*du</td>
<td>flank</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td>16</td>
<td>rwaa</td>
<td>mouth</td>
<td>2</td>
<td>1-2, 3-4</td>
</tr>
<tr>
<td>17</td>
<td>xyaa</td>
<td>wing</td>
<td>2</td>
<td>9-11</td>
</tr>
<tr>
<td>18</td>
<td>ko*la</td>
<td>tail</td>
<td>1</td>
<td>18-19</td>
</tr>
<tr>
<td>19</td>
<td>kwe7 ti7xi</td>
<td>hip</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>20</td>
<td>barri*ga</td>
<td>stomach, belly</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>21</td>
<td>pa*ta</td>
<td>lower extremity</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(non-human)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>xidxi</td>
<td>breast, teat</td>
<td>1</td>
<td>9-11</td>
</tr>
</tbody>
</table>
Analytical principles

- In analyzing the use of BPTs to name parts of novel objects, mappings appear mixed
 - With relations as well as attributes
 - With a shared base domain
- Literal similarity and analogy are on a continuum (Gentner 1983:161)
 - **Literal similarity**
 - Mapping of predicates
 - More predicates are mapped than not
 - Predicates may include attributes as well as relations
 - **Analogy**
 - Comparison between relational predicates
 - Few or no attributes are mapped

<table>
<thead>
<tr>
<th>Literal Similarity</th>
<th>Analogy</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>Attributes</td>
</tr>
<tr>
<td>--</td>
<td>Relations</td>
</tr>
</tbody>
</table>

- In abstraction, the base domain is an abstract set of relations
Literal similarity

- **dyaga** ‘ear’

1) **ko7lu dyaga wiini ka!**
 no face **ear** small DEM
 gi!7di +ni
 adhered +3i
 ‘no, it is stuck to the ear’

<table>
<thead>
<tr>
<th></th>
<th>Base domain</th>
<th>Target domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td>APPENDICES SMALL</td>
<td>APPENDICES SMALL</td>
</tr>
<tr>
<td>Relations</td>
<td>TWO/PAIR, OPPOSITE (a,b)</td>
<td>TWO/PAIR, OPPOSITE (a,b)</td>
</tr>
<tr>
<td></td>
<td>ATTACHED (part, volume)</td>
<td>ATTACHED (part, volume)</td>
</tr>
</tbody>
</table>

Figure 15. Stimuli – Novel object part identification task #7
Literal similarity

- **x.kipi!7** ‘belly button’

2) ra n.apa* +ni* ti+ x.kipi!7 wiini la!
 LOC STA.have 3l INDEF POS.belly-button small FOCUS
 gi!7di ti+ na-yase!7 adhered INDEF STA-black

‘a black (piece) is adhered where it has a belly button’

<table>
<thead>
<tr>
<th></th>
<th>Base domain</th>
<th>Target domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td>CIRCULAR</td>
<td>CIRCULAR</td>
</tr>
<tr>
<td></td>
<td>SCAR (?)</td>
<td></td>
</tr>
<tr>
<td>Relations</td>
<td>DEPRESSION or PROTRUSSION (part, surface), NEAR-INTERSECTION (sagittal axis/plane, transverse axis/plane, frontal axis/plane)</td>
<td>DEPRESSION (part, surface), NEAR-INTERSECTION (sagittal axis/plane, transverse axis/plane, frontal axis/plane)</td>
</tr>
</tbody>
</table>
Analogy

- **na*7** ‘upper extremity’

3) **ka7 na*7 wiini**
 - PL **hand** small
 - ‘the hands’

<table>
<thead>
<tr>
<th>Base domain</th>
<th>Target domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td>ARTICULATED (MOVABLE?) WITH APPENDAGES</td>
</tr>
<tr>
<td>Relations</td>
<td>EXTENSION (part, whole) TWO/PAIR OPPOSITE (a,b)</td>
</tr>
<tr>
<td></td>
<td>EXTENSION (part, whole) OPPOSITE (a, b; c, d)</td>
</tr>
</tbody>
</table>

Figure 17. Stimuli – Novel object part identification task #5
• **nyee** ‘lower extremity’

4) **nyee** +ni* ka!
lower-extremity +3l DEM
*gi!*7di ti+ ndaa* bo*la wiini be*rrde
Adhered DEM+ piece ball small green
‘Its leg, a green piece is stuck (to it)’

<table>
<thead>
<tr>
<th>Base domain</th>
<th>Target domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td>ARTICULATED (MOVABLE?) WITH APPENDAGES</td>
</tr>
<tr>
<td>Relations</td>
<td>EXTENSION (part, whole) TWO/PAIR SUPPORT (part, whole) PARALLEL (a,b)</td>
</tr>
</tbody>
</table>
Analogy

- **nyee** ‘lower extremity’

5) ra n.apa* +ni* chupa* chonna*
LOC STA.have +3I dos tres

nyee +ni* **ka! la!**
lower.extremity +3I DEM FOCUS

‘where it has a few legs’

<table>
<thead>
<tr>
<th>Base domain</th>
<th>Target domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td>ARTICULATED (MOVABLE?) WITH APPENDAGES</td>
</tr>
<tr>
<td>Relations</td>
<td>EXTENSION (part, whole)</td>
</tr>
<tr>
<td></td>
<td>TWO/PAIR</td>
</tr>
<tr>
<td></td>
<td>SUPPORT (part, whole)</td>
</tr>
<tr>
<td></td>
<td>PARALLEL (a,b)</td>
</tr>
<tr>
<td></td>
<td>SUPPORT (part, whole)</td>
</tr>
<tr>
<td></td>
<td>“pretend” support seems sufficient to sustain the analogy</td>
</tr>
</tbody>
</table>
Abstraction

• Set of six BPTs
 o Base domain: an abstract relational structure comprised of axis and planes
 o Target domain: may be objects with few to no parts

• These are the most productive BPTs
 o Attested in domains of animal (human, nonhuman) anatomy, plant morphology and object geometry
 o Used in cases of few, simple or no parts

<table>
<thead>
<tr>
<th>TPC</th>
<th>Eng gloss</th>
<th>Abstract relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ike</td>
<td>head</td>
<td>TOP END (vertical axis)</td>
</tr>
<tr>
<td>zha7na</td>
<td>buttocks</td>
<td>BOTTOM END (vertical axis)</td>
</tr>
<tr>
<td>lu</td>
<td>face</td>
<td>ANTERIOR (frontal plane)</td>
</tr>
<tr>
<td>deche</td>
<td>back</td>
<td>POSTERIOR (frontal plane)</td>
</tr>
<tr>
<td>kwe7</td>
<td>flank</td>
<td>END (transverse axes)</td>
</tr>
<tr>
<td>ndaani</td>
<td>stomach, belly</td>
<td>INTERIOR (volume)</td>
</tr>
</tbody>
</table>

Figure 19. Set of six most productive BPTs applied to ordinary object of simple geometry

Figure 20. Axes of the human body Image source: http://biowiki.udavis.edu/Textbook_Maps/OpenStax_Biology/7%3A_Animal_Structure_and_Function/33%3A_The_Animal_Body%3A_Basic_Form_and_Function/33.1%3A_Animal_Form_and_Function
Interface with Frames of Reference (FoR)

- Mapping in the context of abstraction is dependent upon a projection of a relative FoR
 - This is an otherwise dispreferred FoR (Pérez Báez 2011)
 - But a projection from the speaker’s perspective is required for mapping in a case of abstraction

Figure 21 (Top). Set of six most productive BPTs applied to ordinary object of simple geometry
Figure 22 (bottom). Model of an abstract FoR
Summary

<table>
<thead>
<tr>
<th>LITERAL COMPARISON</th>
<th>ANALOGY</th>
<th>ABSTRACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>Attributes</td>
<td>--</td>
</tr>
<tr>
<td>--</td>
<td>Relations</td>
<td>++</td>
</tr>
</tbody>
</table>

Mapping of a higher number of predicates including attributes and relations

Mapping of a higher number of relations than of attributes; some predicates are not mapped

The base domain is an abstraction

THE MAPPING OF RELATIONS DEPENDS ON THE USE OF THE RELATIVE FoR
Patterns of use

- Critique of metaphor-driven semantic extension: it will over-generate analogies (Levinson 1994)
 - Could the protuberances in NO3 be called knees, noses, knuckles, warts, ears?
 - Probably not

<table>
<thead>
<tr>
<th>Relator</th>
<th>Relator Type</th>
<th>By Dyad (token)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bo*la wiini</td>
<td>small ball</td>
<td>7.8 (2); 9.11 (3); 18-19 (1)</td>
</tr>
<tr>
<td>nyee</td>
<td>lower extremity</td>
<td>1-2 (3); 3-4 (4)</td>
</tr>
<tr>
<td>lu</td>
<td>face</td>
<td>1.2 (1)</td>
</tr>
<tr>
<td>xidxi</td>
<td>breast</td>
<td>9-11 (1) during repair and with visual contact</td>
</tr>
</tbody>
</table>
Conventions

- There are clear tendencies for preference of certain BPTs across dyads
 - Preference for 6 BPTs of the abstract relational model
 - And the extremities

- This is indicative of a shared system of conventions of semantic extension
 - That still allows for individual flexibility

<table>
<thead>
<tr>
<th>TPC</th>
<th>Eng gloss</th>
<th>Prod.</th>
<th># of dyads</th>
<th>Dyads</th>
</tr>
</thead>
<tbody>
<tr>
<td>nyee</td>
<td>lower extremity</td>
<td>H>A>O</td>
<td>5</td>
<td>1-2, 3-4, 7-8, 9-11, 18-19</td>
</tr>
<tr>
<td>ndaani</td>
<td>stomach, belly</td>
<td>H>A>O</td>
<td>5</td>
<td>1-2, 3-4, 7-8, 9-11, 18-19</td>
</tr>
<tr>
<td>lu</td>
<td>face</td>
<td>H>A>O</td>
<td>4</td>
<td>1-2, 3-4, 7-8, 9-11</td>
</tr>
<tr>
<td>kwe7</td>
<td>flank</td>
<td>H>A>O</td>
<td>4</td>
<td>1-2, 3-4, 9-11, 18-19</td>
</tr>
<tr>
<td>na*7</td>
<td>upper extremity</td>
<td>H>A>O</td>
<td>4</td>
<td>1-2, 3-4, 7-8, 18-19</td>
</tr>
<tr>
<td>ike</td>
<td>head</td>
<td>H>A>O</td>
<td>4</td>
<td>1-2, 3-4, 9-11, 18-19</td>
</tr>
<tr>
<td>deche</td>
<td>back</td>
<td>H>A>O</td>
<td>4</td>
<td>1-2, 3-4, 7-8, 9-11</td>
</tr>
<tr>
<td>zha7na</td>
<td>buttocks</td>
<td>H>A>O</td>
<td>3</td>
<td>1-2, 3-4, 9-11</td>
</tr>
<tr>
<td>gye lu</td>
<td>eye</td>
<td>H>A>O</td>
<td>3</td>
<td>1-2, 3-4, 7-8</td>
</tr>
<tr>
<td>gipil7</td>
<td>xkipil7</td>
<td>H(>A)</td>
<td>2</td>
<td>1-2, 9-11</td>
</tr>
<tr>
<td>yanni</td>
<td>neck</td>
<td>H>A>O</td>
<td>2</td>
<td>1-2, 9-11</td>
</tr>
<tr>
<td>zhii</td>
<td>nose</td>
<td>H>A>O</td>
<td>2</td>
<td>3-4, 9-11</td>
</tr>
<tr>
<td>rwaa</td>
<td>mouth</td>
<td>H>A>O</td>
<td>2</td>
<td>1-2, 3-4</td>
</tr>
<tr>
<td>dyaga</td>
<td>ear</td>
<td>H>A>O</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>j. lo*mo</td>
<td>back (non-human)</td>
<td>(A)</td>
<td>1</td>
<td>5-6</td>
</tr>
<tr>
<td>kosta*du</td>
<td>flank</td>
<td>?</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>xyaa</td>
<td>wing</td>
<td>A</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>ko*ta</td>
<td>tail</td>
<td>A</td>
<td>1</td>
<td>18-19</td>
</tr>
<tr>
<td>kwe7 ti7xi</td>
<td>hip</td>
<td>A</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>barri*ga</td>
<td>stomach, belly</td>
<td>(H)</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>pa*ta</td>
<td>lower extremity (non-human)</td>
<td>?</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>xidxi</td>
<td>breast, teat</td>
<td>H</td>
<td>1</td>
<td>9-11</td>
</tr>
<tr>
<td>pi*ku</td>
<td>bill</td>
<td>A</td>
<td>1</td>
<td>3-4</td>
</tr>
<tr>
<td>Critiques of metaphor-based explanation</td>
<td>Response based on SMT approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Overgeneration of comparison and semantic extension</td>
<td>1. Clear patterns of shared preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. That not all BPTs are extended outside their semantic domain</td>
<td>2. Preferred BPTS from relational model + extremities but other BPTs can be extended too</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Possible mismatches between the base and the target, ex. Three hands, two noses.</td>
<td>3. Explained by analysis of different types of comparisons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Naming of parts of simple objects is contrary to simple/concrete-to-complex/abstract direction in analogy and metaphor.</td>
<td>4. Explained by interface between meronymy and FoR use</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Contributions by endangered languages to the study of spatial language and cognition
Some languages informing our research

- Otomanguean

- Mayan
 - Tzeltal: Levinson 1994
 - Tzotzil: de León 1992

- Tarascan, Totonac:

Enfield, Majid, van Staden (2006)
- Jahai (Malaysia, Burenhult)
- Lao (Laos, Enfield)
- Kuuk Thaayorre (Australia, Gaby)
- Yélî Dnye (Papua New Guinea, Levinson)
- Punjabi (Pakistan/India, Majid)
- Tiriyó (Brazil/Surinam, Meira)
- Lavukaleve (Solomon Islands, Terrill)
- Tidore (Indonesia, van Staden)
- Savosavo (Solomon Islands, Wegener)
- American Sign Language (USA, Pyers)
Their vitality status

- **Tzeltal**
 - 260,000, at risk, (ELCat)
- **Tzotzil**
 - 229,200, at risk (ELCat)
- **Tarascan**
 - 117,200, threatened (ELCat)
- **Totonac**
 - Papantla, 80,000, vulnerable (ELCat)
- **Isthmus Zapotec**
 - 80,000, vulnerable (ELCat)
- **Chalcatongo Mixtec**
 - Western Alta Mixtec, 61,000, vulnerable (ELCat)
- **Copala Triqui**
 - Triqui, 25,880, vulnerable (ELCat)
- **Ayoquesco Zapotec**
 - 880 speakers, endangered (ELCat)
- **Tlacolula Valley Zapotec**
 - ?, critically endangered (my assessment)
- **Punjabi**
 - 90M, developing
- **Lao**
 - 3M, national (Ethnologue)
- **American Sign Language**
 - 250,000, developing (Ethnologue)
- **Tidore**
 - L1-26,000, L2-20,000, vigorous (Ethnologue)
- **Tiriyó**
 - 2,450, threatened (ELCat)
- **Savosavo**
 - 2,500, threatened (ELCat)
- **Lavukaleve**
 - 1,700, threatened (ELCat)
- **Kuuk Thaayorre**
 - 150, endangered (ELCat)
- **Jahai**
 - 1,000 – 9,999, threatened (Ethnologue)
- **Yélî Dnye**
 - 4,000, N/A (Levinson 2006)

ELCat: Endangered Languages Catalog
To close

• Our understanding of the human language faculty in all its facets depends heavily on our ability to study a diversity of language of the world.

• Our ability to learn about a critical ability that defines humans is threatened by current trends and forecasts for the number of silenced languages.

• At GeoGrounding!
 1. Isthmus Zapotec
 2. Chiapas Zoque
 3. Traditional aš-šāni Arabic
 4. Dhivehi
 5. Atoll-based Marshallese
 6. Murrinhpatha
 7. Shua
 8. Caac
 9. Finnish
 10. Language contact in Viking-Age colonies in the British Isles, North America, Australia and Greenland
 11. Danish
 12. English
 13. Icelandic, Faroese, Greenlandic
 14. Kalasha
 15. Palula
 16. Acazulco Otomí
 17. Dene
 18. Saaroa
 19. Komnzo
 20. Mexican Spanish
Xki*zhepe’ laatu* • Tak • Thank you